

STRUCTURAL CALCULATIONS

FOR

Hardy Tie Back Device HTB-24

SDS Connection

PREPARED FOR:

Hardy Fall Protection Systems, Inc.

Mohsen Anis, M.S., P.E.

RCE No. C69482 EXP. 06/30/2022

TI RADCO, LLP

3220 E.59TH STREET

LONG BEACH, CA 90805

Tel (562) 272-7231 Fax (562) 529-7513 www.RADCOinc.com Email: info@RADCOinc.com

May 2020

Hardy Tie Back HTB 24 SDS Connection 200505 INDEX

STRUCTURAL CALCULATIONS INDEX

ITEM No.	DESCRIPTION	PAGE No
1	COVER SHEET	1
2	INDEX	2
3	CODES AND MATERIAL SPECIFICATIONS	3
4	HTB LOADING	4
5	CHECK OF EYELET PLATE AS TENSION MEMBER	5
6	CHECK OF HTB STEEL POST STRENGTH	7
7	CHECK OF FILLET WELD AT POST BASE	9
8	HTB ATTACHMENT	10
9	CHECK OF FASTENERS FOR UPLIFT	11

Hardy Tie Back HTB 24 SDS Connection 200505 CODES & MATERIAL SPECS

DESIGN CRITERIA AND ASSUMPTIONS

BUILDING CODES AND MATERIAL STANDARDS

STRUCTURAL DESIGN MEETS OR EXCEEDS PROVISIONS OF THE FOLLOWING BUILDING CODES AND MATERIAL STANDARDS

2018 IBC CALIFORNIA BUILDING CODE 2019 IRC CALIFORNIA RESIDENTIAL CODE

ASCE 7-16 MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES

AISC 360-16 STEEL CONSTRUCTION MANUAL, FOURTEENTH EDITION
AISC 341-16 SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILDINGS
ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE

AWS D1.1 / D1.1M 2015 STRUCTURAL WELDING CODE

MATERIAL SPECIFICATIONS

UNLESS OTHERWISE NOTED ON THE DRAWINGS, MATERIALS SHALL CONFORM TO THE FOLLOWING SPECIFICATIONS

1) STRUCTURAL STEEL:

STRUCTURAL STEEL SHALL CONFORM TO THE ASTM DESIGNATION AS FOLLOWS:

W SHAPE	ASTM A992	$F_y =$	50 ksi
PIPE	ASTM A53 - Gr. B	$F_y =$	35 ksi
RECTANGULAR HSS	ASTM A500 - Gr. B	$F_y =$	46 ksi
CIRCULAR HSS	ASTM A500 - Gr. B	$F_y =$	42 ksi
ANGLES	ASTM A36	$F_y =$	36 ksi
CHANNELS	ASTM A36	$F_y =$	36 ksi
STEEL PLATES	ASTM A572 GRADE 50	$F_{v} =$	50 ksi

2) **CONNECTIONS**:

BOLTS ASTM A325 - N

WELDS E70XX

3) **CONCRETE:**

CONCRETE USED FOR FOUNDATION SHALL DEVELOP A MINIMUM COMPRESSIVE STRENGTH OF 2500 psi IN 28 DAYS"

4) **REINFORCING STEEL:**

REINFORCING STEEL SHALL CONFORM TO ASTM A615 $F_v = 60 \text{ ksi}$

5) ANCHORS:

ANCHOR RODS ASTM F1554 Gr. 36 $F_v = 36 \text{ ksi}$

CHECK OF EYELET PLATE AS TENSION MEMBER BY PROVISIONS OF ANSI/AISC 360-16 (STEEL CONSTRUCTION MANUAL- FIFTEENTH EDITION) 3125 lb 814" **INPUT** MEMBER ID EYELET PLATE GENERAL: PLATE WIDTH: PLATE THICKNESS 3.50 in STRAP INPUT: ASTM A36 SHEAR LAG FACTOR U = 1.00 ASTM SPECIFICATION NUMBER OF HOLES IN STRAP PLATE 2 1 HOLE DIAMETER = in SECTION n = NEGLECTED WIDTH DUE TO HOLE ADDED WIDTH FOR HOLES = 0 in 1/16 in PUNCHING = CALCULATIONS EYELET PLATE STRENGTH IN TENSION PLATE THICKNESS t = GROSS, NET AND EFFECTIVE AREA: 1.000 in GROSS AREA OF MEMBER A_g 3.500 sq.in 2 1/16 in HOLE DIAMETER = NET AREA OF MEMBER A_n = 1.438 sq.in 1.438 sq.in EFFECTIVE NET AREA A_e = A_n U = MATERIAL PROPERTIES: TENSION MEMBER YIELD STRESS F_v = 36 ksi 58 ksi TENSION MEMBER ULTIMATE TENSILE STRESS F_u = TENSILE YIELDING IN THE GROSS SECTION 126.000 kip AISC 360-16 EQUATION D2-1 $P_n = F_v A_g =$ $\Omega = 1.67$ AISC 360-16 EQUATION D2-1 DESIGN TENSILE STRENGTH Φ P_n OR ALLOWABLE TENSILE STRENGTH P_n/ Ω = 75.449 kip TENSILE RUPTURE IN THE NET SECTION AISC 360-16 EQUATION D2-2 $P_n = F_u A_e =$ 83.375 kip AISC 360-16 EQUATION D2-2 $\Omega = 2.00$ DESIGN TENSILE STRENGTH Φ P_n OR ALLOWABLE TENSILE STRENGTH P_n/ Ω = 41.688 kip TENSILE RUPTURE IN THE NET SECTION GOVERNS, DESIGN TENSILE STRENGTH Φ P_n OR ALLOWABLE TENSILE STRENGTH P_n/ Ω = 41.688 kip CHECK EYELET PLATE STRENGTH IN TENSION: AVAILABLE TENSILE STRENGTH $P_n/\Omega =$ 41.688 kip REQUIRED TENSILE STRENGTH = 3.125 kip RATIO OF REQUIRED STRENGTH/ AVAILABLE STRENGTH = 0.075 OK

CHECK OF HTB ST	EEL PO	ST STREN	GTH				
BY PROVISIONS OF AISC 360-16					i		
		MEMBEI	R INPUT				
SECTION INPUT: MEMBER ID	НТВ-	-24			SHAPE:	PIPE	
SECTION:	Pipe3-1	/2XS	ASTM SPEC.		REFERRED CATION	ASTM A53 Grade B	
EFFECTIVE LENGTH FOR DESIGN FOR COMPR	ESSION: A	AISC 360-16 SEC	CTION E2		CATION	FOR Y AXIS	
ATTECTIVE BENGTH FOR BEGIGN FOR COMME		ALLY UNBRAC			1 ft	2.21 ft	
			K	2.	00	2.00	
AISC 360-16 SECTION (B4-2)	USE DESI	GN WALL THIC	CKNESS = 0.93 N	NOMINAL WAL	L THICKNESS?	YES	
DISTANCE FROM MAXIMUM TO ZERO SHEAR I	FORCE:				$L_v =$	2.21 ft	
		UMMARY O	F RESULTS				
AVAILABLE STRENGTH OF SECTION:			LRFD			ASD	
AVAILABLE COMPRESSIVE ST	RENGTH:	$\Phi_{c} P_{n} =$	99.747	7 kips	$P_n / \Omega_c =$	66.365 kips	
AVAILABLE TENSILE ST	RENGTH:	$\Phi_t P_n =$	108.41	1 kips	$P_n / \Omega_t =$	72.130 kips	
AVAILABLE FLEXURAL ST	RENGTH:	$\Phi_b M_n =$	10.675	kip-ft	$M_n / \Omega_b =$	7.102 kip-ft	
AVAILABLE SHEAR ST	RENGTH:	$\Phi_{\rm v} V_{\rm n} =$	32.523	3 kips	$V_n / \Omega_v =$	21.639 kips	
		CALCUL	ATIONS				
	N		ROPERTIES				
		YOUNG'S I	MODULUS E _s =		29000 l 35 ks		
			$F_y = F_y = F_y = F_y$		60 ks		
	,	SECTION PR	ü				
			IAMETER D =		4 in		
AISC 360-16 SECTION (B4-2)		$ \begin{array}{c c} \text{INAL WALL THICKNESS } t_{\text{nom}} = & 0.318 \text{ in} \\ \text{ESIGN WALL THICKNESS } t_{\text{des}} = & 0.296 \text{ in} \\ \end{array} $					
MSC 300-10 SECTION (B4-2)	CROSS SECTION AREA A =			3.442 sq.in			
			D/t =		13.53		
	N	MOMENT OF IN	ERTIA I (in ⁴) = MODULUS S =		5.94 2.97		
			GYRATION r =		1.314 cu	ı.in	
	PLA	STIC SECTION	MODULUS Z=		4.067 i	n	
CLASSWICATION OF SECTION FOR UNITORI			ESSIVE STRE				
- CLASSIFICATION OF SECTION FOR UNIFORM	A COMPRES	SSION: (AISC 3	<u>60-16 TABLE B</u> D/t =	<u>.4.1a)</u>	13.53		
			$\lambda_{\rm p}$ =		N/A		
a aam	ICATION FO		$0.11 \text{ E/F}_{y} =$		91.14		
CLASSIF - SLENDERNESS RATIO: AISC 360-16 SECTIO		R UNIFORM CO	OMPRESSION: $L_c/r)_x = (KL/r)_x =$		NONCOMPACT 40.34		
Auge 300-10 SECTIO	SECTION E2 $(L_{c}/r)_{v} = (KL/r)_{v} =$			40.34			
			$_{\text{max}} = (\text{KL/r})_{\text{max}} =$		40.34		
ELASTIC CRITICAL BUCKLING STRESS F.			≤ 200		OK		
AISC 360-16 EQUAT.	ION (E3-4)	F. =	$\pi^2 E / (L_c / r)^2 =$		175.881	ksi	
MEMBERS WITHOUT SLENDER ELEMENTS			S OF AISC 360-1	6 SECTION E3 (
IMIT STATE OF FLEXURE BUCKLING					135.58		
SC 360-16 EQUATION (E3-2) $F_{cr} = [0.658^{Fy/Fe}] F_{\gamma}$ SC 360-16 EQUATION (E3-3) $F_{cr} = 0.877 F_{e}$			32.203 ksi N/A				
AISC 360-16 EQUATION (E3-3)			$F_{cr} = 0.877 F_{e}$ $F_{cr} =$		32.203	csi	
AVAILABLE COMPRESSIVE STRENGTH PRO	VISIONS OF	AISC 360-16 SE		MBERS WITHO	UT SLENDER ELE		
			$F_{cr} =$		32.203		
AISC 360-16 EQUATION (E3-1)	г		$P_{n} = F_{cr} A_{g} = $ LRFD	110.83 kips ASD			
	⊢	$\Phi_{\rm c} =$	0.	9	$\Omega_{\rm c} =$	1.67	
AISC 360-16 SECTION E1		$\Phi_c =$					

	AVAI	ILABLE TENSILI	E STRENC	ТН			
ASSUMING $A_g = A_n = A_e$)	AVA		$A_n = A_e =$	111	3.442 sq.ir	1	
TENSILE YIELDING IN THE GRO	OSS SECTION: AISC 360 16 EO	Ü	$Y_n = F_v A_g =$		120.46 kip		
TENSILE TIELDING IN THE GRO	<u> </u>		LRFD		120.40 кір	ASD	
AISC 360-16 SECTION D2. (a)	ŀ	$\Phi_{t} =$	0.9		$\Omega_{t} =$	1.67	
AVA	$\Phi_t P_n =$	108.4111	cins	$P_n / \Omega_t =$	72.13 kips		
TENSILE RUPTURE IN THE NET		$F_n = F_u A_e =$	P-	206.50 kip			
ENSIEE ROTTORE IIV THE IVET	Inde 300 to EQ		LRFD		200.00 hip	ASD	
AISC 360-16 SECTION D2. (b)	ļ	$\Phi_t =$	0.75		$\Omega_{t} =$	2.00	
* *	ILABLE TENSILE STRENGTH:	$\Phi_t P_n =$	154.8721	cins	$P_n / \Omega_t =$	103.25 kips	
TENSILE YIELDING IN THE G	.		LRFD	Стрэ	1 n / \$2t —	ASD	
	ABLE TENSILE STRENGTH:	$\Phi_t P_n =$	108.411 l	zine	$P_n / \Omega_t =$	72.13 kips	
AVAIL				•	1 n / \$2t -	72.13 Kips	
TI A COLDICATION OF CECTIO		LABLE FLEXUR					
CLASSIFICATION OF SECTIO	N FOR LUCAL BUCKLING IN	FLEXURE: (AISC 3	$\lambda = D/t =$	B.4.1b)	13.53		
		λ =	$0.07 \text{ E/F}_{v} =$		58.000 cu.i	n	
			-				
GE CIT	NOVE OF A GOVERNMENT OF TOO		$0.31 \text{ E/F}_{y} = $		256.857 ir		
	TION CLASSIFICATION FOR LO	CAL BUCKLING IN F	LEXURE:		COMPAC	I	
CHECK D# < 0.45 E/E	12 52520202	272.96	OV				
CHECK D/t $< 0.45 \text{ E/F}_y$:	13.52539393 <	372.86	OK		1401: :		
AISC 360-16 EQUATION (F8-1)		$M_n = N$	$M_{\rm p} = F_{\rm y} Z =$		142 kip-in	1	
LIMIT STATE OF FLANGE LO							
FOR NONCOMPACT SECTION	S:						
AISC 360-16 EQUATION (F8-2)		$M_n = (0.021E / ($	D/t) + F_y) S		N/A		
FOR SLENDER SECTIONS:							
AISC 360-16 EQUATION (F8-4)			33E / (D/t)		N/A		
AISC 360-16 EQUATION (F8-3)		N	$I_n = F_{cr} S =$		N/A		
DESIGN FLEXURE STRENGT							
	NOMINAL FLEXURAL STR	ENGTH OF THE SECT	$\Gamma ION M_n =$		142 kip-in	l	
]	LRFD			ASD	
AISC 360-16 SECTION F1		$\Phi_{\rm b} =$	0.9		$\Omega_{\rm b} =$	1.67	
AVAILAB	LE FLEXURAL STRENGTH:	$\Phi_b M_n =$	128.099 ki	ip-in	$M_n / \Omega_b =$	85.229 kip-in	
	AVA	ILABLE SHEAR	STRENGT	Ή			
			$L_{v} =$		2.21 ft		
AISC 360-16 SECTION G6	F _{cr} IS THE LARGER OF:		٠ ــــــ				
AISC 360-16 EQUATION (G5-2a)	C	$F_{cr} = 1.60 \text{ E} / \sqrt{(L_v / D)}$	$(D/t)^{5/4} =$		695.005 ks	ii	
* * *		$F_{cr} = 1.60 \text{ E} / \text{V}(L_v / D) (D/t)^{-1} = F_{cr} = 0.78 \text{ E} / (D/t)^{3/2} = 0.78 \text{ E} / (D$					
AISC 360-16 EQUATION (G5-2b)					454.745 ksi		
		F _{cr} UPPER LIMIT	_		21.000 ks		
			$F_{cr} =$		21.000 ks		
AISC 360-16 EQUATION (G5-1)	NOMINAL SHE	EAR STRENGTH $V_n =$	$F_{cr} A_g / 2 =$		36.14 kips	3	
			LRFD			ASD	
		$\Phi_{v} =$	0.9		$\Omega_{\rm v}$ =	1.67	
AISC 360-16 SECTION G1	<u> </u>	Φ_{V} –			$V_n / \Omega_v =$	21.64 kips	
	LABLE SHEAR STRENGTH:	$\Phi_{v} = \Phi_{v} = \Phi_{v$	32.523 k	ips			
	LABLE SHEAR STRENGTH:		32.523 k	1ps			
	LABLE SHEAR STRENGTH:		32.523 k	ips			
		$\Phi_{\rm v} { m V_n} =$					
AVA	CH	Φ _v V _n =	RENGTE				
AVA	CH	Φ _v V _n =	RENGTE				
AVA	CH H FOR ALLOWABLE STE	Φ _v V _n =	RENGTH	I	RED /		
AVA	CH	Φ _v V _n =	RENGTH	I REQUI		СНЕСК	
AVA	CH H FOR ALLOWABLE STE	Φ _v V _n =	RENGTH	I		СНЕСК	
CHECK POST STRENGT	CH I FOR ALLOWABLE STE REQUIRED	Φ _v V _n = HECK POST ST RESS DESIGN LO AVAILAB	RENGTE ADING LE	I REQUI AVAIL	ABLE		
AVA	CH H FOR ALLOWABLE STE	Φ _v V _n =	RENGTE ADING LE	I REQUI	ABLE	CHECK OK	
CHECK POST STRENGTE	FOR ALLOWABLE STEREQUIRED 3.13 kip	Φ _v V _n = HECK POST ST RESS DESIGN LO AVAILAB 72.13 kip	RENGTE ADING LE	REQUI AVAIL 0.04332	ABLE 24848		
CHECK POST STRENGTE	CH I FOR ALLOWABLE STE REQUIRED	Φ _v V _n = HECK POST ST RESS DESIGN LO AVAILAB	RENGTE ADING LE	I REQUI AVAIL	ABLE 24848		
CHECK POST STRENGTE TENSILE STRENGTH:	FOR ALLOWABLE STEREQUIRED 3.13 kip	Φ _v V _n = HECK POST ST RESS DESIGN LO AVAILAB 72.13 kip	RENGTE ADING LE	REQUI AVAIL 0.04332	ABLE 24848	OK	
CHECK POST STRENGTE TENSILE STRENGTH:	FOR ALLOWABLE STEREQUIRED 3.13 kip	Φ _v V _n = HECK POST ST RESS DESIGN LO AVAILAB 72.13 kip	ADING LE	REQUI AVAIL 0.04332	24848 16159	OK	

CHECK OF FILLET WELD AT POST BASE (ASD) BY PROVISIONS OF ANSI/AISC 360-16 INPUT SECTION: Pipe3-1/2XS POST: ASTM SPECIFICATION ASTM A53 Grade B **BASE PLATE:** THICKNESS t = 0.500 in ASTM SPECIFICATION ASTM A36 ELECTRODE CLASSIFICATION E70XX FILLET WELD PROPERTIES: FILLET WELD LEG SIZE AT FLANGE = 1/2 in APPLIED AXIAL FORCE FZ 3.125 kip APPLIED LOADS 3.125 kip APPLIED SHEAR FORCE $F_x =$ $0.000 \ \mathrm{kip}$ APPLIED SHEAR FORCE F_v = APPLIED BENDING MOMENT $M_x =$ $0.000~\mathrm{kip}\text{-in}$ APPLIED BENDING MOMENT M_v = 82.813 kip-in APPLIED BENDING MOMENT Mz = 0.000 kip-in

Hardy Tie Back HTB 24 SDS Connection 200505 POST BASE WELD (P)

CALCULATIONS	
POST PROPERTIES: OUTSIDE DIAMETER D =	4.000 in
$t_{des} =$	0.296 in
$\overline{F_{v}} =$	35 ksi
$F_{u} =$	60 ksi
ASE PLATE PROPERTIES: $F_y =$	36 ksi
$\vec{F_u} =$	58 ksi
ILLET WELD PROPERTIES: AISC 360-16 TABLE J2.5 $F_y = 0.6 F_{EXX} =$	42.0 ksi
TOTAL LENGTH OF WELD L =	13.68 in
$I_x = I_v = \pi d_1^4 / 64 - \pi d_2^4 / 64 =$	11.53 in^4
$C_x = C_y =$	2.35 in
$S_x = S_v =$	4.90 cu.in
JISC 360-16 TABLE J2.4 MINIMUM WELD SIZE =	3/16 in
CHECK PROVIDED WELD SIZE ≥ MINIMUM ALLOWABLE	OK
EFFECTIVE LENGTH	13.68 in
EFFECTIVE THROAT	0.35 in
EFFECTIVE AREA $A_w =$	4.84 sq.in
VELD REQUIRED STRENGTH	
1- SHEAR STRESSES:	0.646 ksi
SHEAR STRESS DUE TO F_X $r_{Fax} = F_X / A_e =$	0.646 KSI 0.000 ksi
SHEAR STRESS DUE TO F_Y $r_{Fay} = F_Y / A_e =$	
MOST CRITICAL SHEAR STRESS DUE TO TORSION M_Z $r_{Max} = M_Z C_y / I_P = -M_Z C_y / I_Z $	0.000 ksi 0.000 ksi
$r_{\text{May}} = M_Z C_x / I_p =$	0.000 KSI
RESULTANT SHEAR STRESS: $r_a = \sqrt{(r_{Fax} + r_{Max})^2 + (r_{Fay} + r_{May})^2}$	0.646 ksi
A V Pak May (Pay May)	0.010101
2- TENSION STRESSES:	
TENSION STRESS DUE TO F_Z $r_{Faz} = F_Z / A_e =$	0.646 ksi
CRITICAL TENSILE STRESS DUE TO M_X $r_{Max} = M_X C_y / I_x =$	0.000 ksi
CRITICAL TENSILE STRESS DUE TO M_Y $r_{May} = M_Y C_x / I_y =$	16.901 ksi
$r_a = r_{Faz} + r_{Max} + r_{May} =$	17.547 ksi
A COMPANY OF THE LEGISLAND TO A STREET OF THE RESERVE THE ATTEMPT OF THE LEGISLAND TO A STREET OF THE LEGISLAND TH	
3- COMBINING SHEAR AND TENSILE STRESSES INTO RESULTANT SHEAR STRESS: $r_a = \sqrt{r_a}_{SHEAR}^2 + r_a_{TENSION}^2$	17.559 ksi
'a V'a SHEAR ' 'a TENSION	17.339 KSI
AISC 360-16 TABLE J2.5 WELD NOMINAL STRESS $F_{nw} = 0.6 F_{EXX} =$	42.00 ksi
AISC 360-16 TABLE J2-5 $\Omega =$	2
WELD AVAILABLE STRESS = WELD AVAILABLE STRESS = F_{nw}/Ω =	21.000 ksi
RATIO OS REQUIRED STRENGTH/ AVAILABLE STRENGTH =	0.836
REQUIRED STRENGTH ≤ AVAILABLE STRENGTH	OK
RATIO OS REQUIRED STRENGTH/ AVAILABLE STRENGTH = REQUIRED STRENGTH ≤ AVAILABLE STRENGTH	

